For OCR

Mathematics

Paper 4 (Calculator)

Higher Tier

Churchill Paper 4A – Marking Guide

Method marks (M) are awarded for using a correct method and are not lost for purely numerical errors

Accuracy marks (A) are awarded for a correct answer and depend on preceding M marks

(B) marks are awarded independent of method

Written by Shaun Armstrong

This paper is part of a product for use in the single school or college that has purchased the licence.

However, this paper is available as a sample that can be used without licence.

Churchill Paper 4A Marking Guide - OCR Higher Tier

(a) $= \frac{3}{2} \times 4 = 6$ eggs 1

B1

 $75 \div 30 = 2.5$ (b) $2.5 \times 250 = 625 \,\text{ml}$ of milk M1 Α1

 $20 \div 4 = 5$ lots of 4 eggs (c)

 $2000 \div 250 = 8$ lots of 250 ml milk

M1

- $500 \div 30 = 16$ and a bit lots of 30 g butter Smallest of these is 5 lots of 4 eggs
- She can make $5 \times 2 = 10$ portions

- M1
- A1 Total 6

2 y-intercept = -1

B1

M1

M1

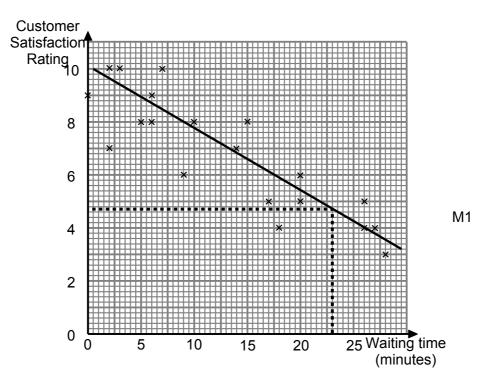
- Gradient [using (-4, 1) to (4, -3)] = $\frac{-3-1}{4-(-4)} = \frac{-4}{8} = -\frac{1}{2}$
- **A1** Total 3

3 £500 = €1.38 × 500 = €690

€690 – €465 = €225

Equation is $y = -\frac{1}{2}x - 1$

[or £172 to nearest pound]


M1 A1 Total 3

9 callers gave a rating of 8 or more 4 (a) Percentage = $\frac{9}{20} \times 100\% = 45\%$

€225 = £225 ÷ 1.31 = £171.76

M1 A1

(b)

- 5 (from their line nearest whole number or raw value)
- Α1
- The line of best fit would predict a negative score but the (c) rating is on a scale of 1 to 10 so this is not possible
- Total 5 B1

Median = $\frac{1}{2}(n + 1)$ th value = $\frac{1}{2}(31 + 1)$ th value = 16th value 5 (a)

There are 6 in first class

There are 6 + 10 = 16 in 1st & 2nd classes so 16th is in second class M1

The median is in the class $25 < N \le 30$

A1

The class intervals have different widths and the 5 large (b)

values between 50 and 70 could pull the mean above 35

В1

Total 3

6 Let the amount Eileen received be $\pounds x$

Layla received £(x + 60)

Naira received £1.5x

x + x + 60 + 1.5x = 900

B1

Total = £900 so:

3.5x = 840

M1

 $x = 840 \div 3.5 = 240$

M1

Naira received $1.5 \times 240 = £360$

Α1 Total 4

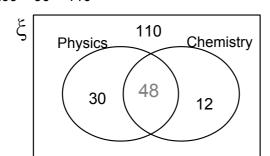
7 Radius = $49244 \div 2 = 24622$

Mean dist. From Sun = $30.069 \times 149597871 = 4498258383$

 $= 1.83 \times 10^5 \text{ times (3sf)}$

M1 M1

Mean dist. ÷ radius = 4 498 258 383 ÷ 24 622


= 182692.6...

M1 A1 Total 4

8 78 - 48 = 30, 60 - 48 = 12(a) 30 + 48 + 12 = 90

200 - 90 = 110

M1

A1

(b) (i) $[=\frac{11}{20}]$

B1

 $=\frac{12}{60}$ [= $\frac{1}{5}$]

M1 A1 Total 5

9 This approximation will have lowered her estimate as the actual (a) value of π is larger than 3, i.e. 3.14...

B1

(b) She has assumed the lichen covers a circular area. The shape of the lichen will not be a perfect circle. It will have indents and bits sticking out which means that her estimate

B1

could be too big or too small.

B1

Total 3

10	(a)	Common difference = 7 so n th term = $7n + ?$ 0th term = $4 - 7 = -3$ nth term = $7n - 3$		M1 A1	
	(b)	$1^{st} = 1$, $2^{nd} = 2$, $3^{rd} = 2^2$, $4^{th} = 2^3$ so	n th = 2^{n-1}	M1	
		On 30^{th} she gives $2^{(30-1)} = 2^{29}$		A1	
		On 31st she gives 2 × 2 ²⁹			
		Extra = $2 \times 2^{29} - 2^{29} = 2^{29}$ pence		M1 A1	Total 6
11	(a)	As a is even, let $a = 2n$ where n is a whole number Now $a^2 = (2n)^2 = 4n^2 = 2 \times 2n^2$ As $2n^2$ is a whole number, a^2 is divisible by 2 and is therefore even		M1 A1	
	(b)	(i) e.g. When $p = 3$ and $q = 1$: $(pq + 1)^2 = (3 + 1)^2 = 16$ which	is even	B1 B1	
		(ii) If $(pq + 1)^2$ is even then $pq + 1$ must Hence pq must be odd Therefore both the numbers p and q		M1 A1	Total 6
12	(a)	$P \propto Q$ P = kQ When $Q = 6$, $P = 15$ so $15 = k \times 6$ $k = 15 \div 6 = 2.5$ P = 2.5Q	5	M1	
		When $Q = 3.5$ $P = 2.5 \times 3.5 =$	8.75	M1 A1	
	(b)	e.g. If Cyrus is correct, $y = \frac{c}{x}$ so $xy = a$ constant $2 \times 20 = 40$ and $4 \times 5 = 20$ So Cyrus cannot be correct		M1	
		If Dinah is correct, $y = \frac{d}{y^2}$ so $x^2y = a$ constant			
		$2^2 \times 20 = 80$ and $4^2 \times 5 = 80$ So Dinah could be correct		M1 A1	Total 6
13	(a)	Angle ACB = angle DCE as they are opposite Angle ABE = angle ADE as they are angles in the same segment Hence, angle ABC = angle CDE Angle BAD = angle BED as they are angles in the same segment Hence, angle BAC = angle CED As the three angles in triangles ABC and CDE are equal the triangles must be similar		B1 M1	
				A1	
	(b)	$\frac{CD}{BC} = \frac{DE}{AB}$ $\frac{CD}{4.6} = \frac{7.8}{5.2}$		M1	
		$CD = 4.6 \times \frac{7.8}{5.2} = 6.9 \text{ cm}$		A1	Total 5

14
$$700 = \frac{7}{\text{area}}$$

 $700 \times area = 7$

Area = $7 \div 700 = 0.01 \text{ m}^2$

Side length of cube = $\sqrt{0.01}$ = 0.1 m Volume of cube = $(0.1)^3$ = 0.001 m³

Density = mass

volume $720 = \frac{\text{mass}}{0.001}$

Mass = $720 \times 0.001 = 0.72 \text{ kg}$

Α1 Total 5

M1 A1

M1

M1

M1

15 e.g.
$$4^{-2} = (2^2)^{-2} = 2^{-4}$$

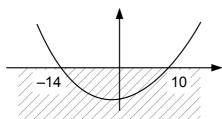
 $8^3 = (2^3)^3 = 2^9$

 $4^{-2} \times 8^3 = 2^{-4} \times 2^9 = 2^5 = 32$

M1 A1 Total 3

16 Width of vent =
$$(x + 4)$$
 cm
Area of XS = $x(x + 4)$ cm²

Therefore $x(x + 4) \ge 140$


 $x^2 + 4x - 140 \ge 0$

For c.v. (x + 14)(x - 10) = 0

x = -14 or 10

M1 **A1**

 $x \le -14$ or $x \ge 10$

x is a length so can't be negative The smallest value of x is 10

M1

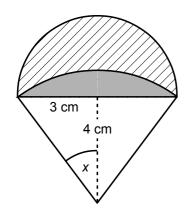
M1 A1

Α1 Total 5

17 (a) On 1st Jan 2016,
$$t = 1$$

When $t = 1$, $V = 2500 \times 1.3 = £3250$

30% **B1**


(c) When
$$t = 2$$
, $V = 3660$

 $3660 = 2500 \times k^2$ Sub in: M1

$$k^2 = \frac{3660}{2500} = 1.464$$

 $k = \sqrt{1.464} = 1.2099... = 1.21$ (3sf) M1 A1 Total 6

(b)

Small circle: area =
$$\pi r^2 = \pi \times 3^2 = 28.274...$$
 M1

Semi-circle: area =
$$\frac{1}{2}$$
 × 28.27 = 14.137... A

Triangle: area =
$$\frac{1}{2} \times 6 \times 4 = 12$$
 B1

Angle:
$$\tan x = \frac{\text{opposite}}{\text{adjacent}} = \frac{3}{4}$$
 M1

$$x = \tan^{-1} \frac{3}{4} = 36.869...$$

Sector: angle =
$$2x = 73.739...$$

area =
$$\frac{\text{angle}}{360} \times \pi r^2$$

= $\frac{73.74}{360} \times \pi \times 5^2$ M1
= 16.087...

$$= 14.14 - 4.09 = 10.049... = 10.0 \text{ cm}^2 \text{ (3sf)}$$

Total 7 **A1**

19 Width of shelf < 1.25 m

Thickness of game ≥ 13.5 mm

1.25 m = 125 cm and 13.5 mm = 1.35 cm

Max. no. on shelf = $125 \div 1.35 = 92.59...$

The maximum is 92

M1 A1 Total 3

В1

20 Volume scale factor = $625 \div 40 = 15.625$

Length scale factor =
$$\sqrt[3]{15.625}$$
 = 2.5

Let Don's model be d cm tall $2.5 \times d = d + 21$

1.5d = 21

$$d = 21 \div 1.5 = 14$$

M1

M1

M1

M1

M1

M1

$$14 + 21 = 35$$

A1 Total 5

21 Perimeter = 8 m so width + length = 4 m

$$x - 1 + \frac{4x}{2x - 1} = 4$$

$$-1 + \frac{1}{2x - 1} = 4$$
 M1
(x - 1)(x - 1) + 4x = 4(2x - 1) M1

$$(2x-1)(x-1) + 4x = 4(2x-1)$$

$$2x^2 - 3x + 1 + 4x = 8x - 4$$

$$2x^2 - 7x + 5 = 0$$
 A1

$$(2x-5)(x-1)=0$$

$$(x-1)=0$$

$$x = \frac{5}{2}$$
 or $x = 1$

x can't be 1 as the width,
$$x - 1$$
, would be 0 so $x = \frac{5}{2}$

Width =
$$\frac{5}{2} - 1 = \frac{3}{2}$$
; Length = $\frac{4 \times \frac{5}{2}}{2 \times \frac{5}{2} - 1} = \frac{10}{5 - 1} = \frac{5}{2}$

Area =
$$\frac{3}{2} \times \frac{5}{2} = \frac{15}{4} = 3\frac{3}{4} = 3.75 \text{ m}^2$$
 A1 Total 7

TOTAL FOR PAPER: 100 MARKS