For AQA

Mathematics

Paper 1 (Non-Calculator)

Higher Tier

Churchill Paper 1A – Marking Guide

Method marks (M) are awarded for a correct method which could lead to a correct answer

Accuracy marks (A) are awarded for a correct answer, having used a correct method, although this can be implied

(B) marks are awarded independent of method

Written by Shaun Armstrong

This paper is part of a product for use in the single school or college that has purchased the licence.

However, this paper is available as a sample that can be used without licence.

Churchill Paper 1A Marking Guide - AQA Higher Tier

- 4
- 5
- 6 6.5

- В1
- Total 1

Total 1

2
$$3\frac{1}{2} \times £10 = £35$$

$$3\frac{1}{2} \times 60p = £1.80 + £0.30 = £2.10$$

$$3\frac{1}{2}$$
 × £10.60 = £35 + £2.10 = £37.10

× 3

- £31.80
- £35.30
- £36.80
- £37.10

В1

- 3 2 6 18 54
 - ×3 ×3

Next term = $3 \times 54 = 162$

2916

- 72
- 162
- 166

- B1
- Total 1

- $\div \frac{1}{2} = \frac{3}{10} \times \frac{2}{1} = \frac{6}{10} = \frac{3}{5}$ 4
 - 3 20

- $1\frac{1}{5}$

B1 Total 1

- 5 1 chain costs $180 \div 20 = £9$ (a)
 - 1 bead costs $750 \div 500 = £1.50$

1 spacer costs $90 \div 100 = £0.90$

1 heart charm costs $120 \div 30 = £4$

Total =
$$9 + (8 \times 1.50) + (4 \times 0.90) + 4$$

$$= 9 + 12 + 3.60 + 4$$

$$=$$
£28.60

M1

M1

M1

Profit on 1 bracelet = 39.90 - 28.60 = £11.30(b)

Profit on 15 bracelets = 15×11.30

$$= 10 \times 11.30 + 5 \times 11.30$$

 $= 113 + 56.50$

$$=$$
£169.50

6 The angles in a triangle add up to 180° so

$$4x + 3x + 20 + 5x - 8 = 180$$

$$12x + 12 = 180$$

$$12x = 168$$

$$x = 14$$

M1

4x = 56, 3x + 20 = 62 and 5x - 8 = 62

As angle ABC = angle ACB the triangle is isosceles

The two sides opposite the equal angles are the same length

Hence, AB = AC

Α1

Total 4

Total 5

7	(a)	= 7 × 6 = 42 ways		B1	
	(b)	Smallest 2 frame sizes: no. of combinations = $2 \times 7 \times 3 = 42$ Largest 3 frame sizes:		M1	
		no. of combinations = $3 \times 7 \times 6 = 126$ Total no. of combinations = $42 + 126 = 168$		A1	Total 3
8	(a)	e.g. She can not be sure of this because 10 is a very small number of trials		B1	
	(b)	No. of times red bead picked = $7 + 6 + 8 + 6 = 27$ No. of trials = 40		M1	
		P(Faria picks a red bead) = $\frac{27}{40}$		A1	
	(c)	No, she is wrong.			
		We know the probability that one bead will be green is $\frac{6}{10}$.			
		However, we don't know the probability that the second will be green, given that the first was green, because we don't know how many beads are in the bag. Her answer assumes that the bag contains 10 beads so that after removing one			
		green bead there are 9 beads left, 5 of which are green.		B2	Total 5
9	p + .	$ \begin{array}{c} 4q - 7 \\ 7 = 4q \\ \underline{p + 7} \\ 4 \end{array} $ $ 7p - 4 \qquad \frac{p}{4} + 7 \qquad p + \frac{7}{4} $	B1	Tota	ı l 1
10	(a)	Jeremy marks 1 homework in 60 ÷ 12 = 5 minutes Kira marks 1 homework in 120 ÷ 30 = 4 minutes Liz marks 1 homework in 6 minutes Therefore Kira is the quickest		M1 A1	
	(b) In 20 minutes Jeremy marks 4 homeworks and Kira marks 5 homeworks Together they mark 9 homeworks in 20 minutes $36 \div 9 = 4$ so they take $4 \times 20 = 80$ minutes $4.30 \text{ pm} + 80 \text{ minutes} = 5.30 \text{ pm} + 20 \text{ minutes} = 5.50 \text{ pm}$ They finish marking at 5.50 pm			M1 M1 A1	Total 5
11	Last	week = 100% week = 120% = 240			

12 Angle in semi-circle = 90° a = 180 - (90 + 38)

a = 52

38

52

58

62

B1

Total 1

13 2 + 3 = 5 $600 \div 5 = 120$

 $2 \times 120 = 240$

120

200

240

250

B1

Total 1

14 (a)

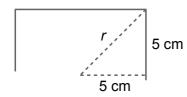
Number of orders (N) Cum. Freq. $40 < N \le 45$ 4 $40 < N \le 50$ 21 $40 < N \le 55$ 54 $40 < N \le 60$ 79 $40 < N \le 65$ 99 $40 < N \le 70$ 113 $40 < N \leq 75$ 120

M1 A1

100 Cumulative Frequency 80 60 70 80 Number of orders

(c) 42 (approx, from graph)

В1


Total 6

Radius of inner circle = $10 \div 2 = 5$ 15

Area of inner circle = $\pi \times 5^2 = 25\pi$

Radius of outer circle = distance from centre to corner of square:

B1

Pythagoras': $r^2 = 5^2 + 5^2 = 25 + 25 = 50$

M1

Area of outer circle = $\pi \times 50 = 50\pi$

Shaded area = $50\pi - 25\pi = 25\pi$ M1

Therefore shaded area = area of inner circle

Total 4 Α1

16 In a normal week, let Henrik earn h and Rob earn r

h: r = 3: 2 so $h = \frac{3}{2}r$

h + 20 : r + 20 = 4 : 3 so $h + 20 = \frac{4}{3}(r + 20)$

M1

B1

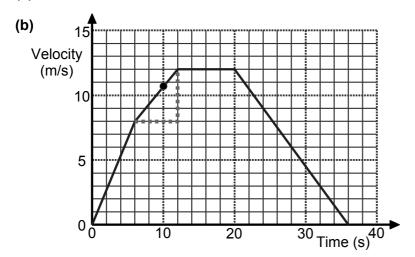
3(h + 20) = 4(r + 20)3h + 60 = 4r + 80

(2)

 $3 \times \frac{3}{2}r + 60 = 4r + 80$ Sub (1) into (2)

M1

 $\frac{9}{2}r + 60 = 4r + 80$


 $\frac{1}{2}r = 20$

r = 40 so, $h = \frac{3}{2} \times 40 = 60$

In the week before Christmas, Henrik earns h + 20 = £80

A1 Total 4

17 (a) 8 seconds B1

Acceleration = gradient of line = $\frac{12-8}{12-6} = \frac{4}{6} = \frac{2}{3}$ m/s²

M1 A1

M2

(c) Distance = area under graph

$$= (\frac{1}{2} \times 6 \times 8) + [\frac{1}{2} \times (8 + 12) \times 6] + (8 \times 12) + (\frac{1}{2} \times 16 \times 12)$$

= 24 + 60 + 96 + 96

= 276 m

Α1 Total 6

18 =
$$\frac{8^3}{4^2}$$
 = $\frac{8 \times 8 \times 8}{4 \times 4}$ = 2 × 2 × 8 = 32

64

128

B1 Total 1

19
$$5y = (4 \times 10^7) + (2 \times 10^6)$$

 $5y = (4 \times 10^7) + (0.2 \times 10^7)$
 $5y = 4.2 \times 10^7$
 $10y = 8.4 \times 10^7$
 $y = 8.4 \times 10^6$

M1

M1 A1 Total 3

David is not correct 20

e.g. When
$$x = \frac{1}{16}$$
: $\sqrt{x} = \sqrt{\frac{1}{16}} = \frac{1}{4}$

$$\sqrt[4]{x} = \sqrt[4]{\frac{1}{16}} = \frac{1}{2}$$

 $\frac{1}{4} < \frac{1}{2}$ making his statement incorrect

M1

A1 Total 2

[Any value in the interval 0 < x < 1 can be used]

21 (a)
$$g(5) = \frac{5+3}{2} = 4$$
 $fg(5) = f(4) = 3 \times 4 - 1 = 11$

M1

(b) Let
$$g(x) = -2$$

 $\frac{x+3}{2} = -2$
 $x+3=-4$
 $x=-7$

M1

$$x + 3 = -4$$

 $x = -7$
Therefore $g^{-1}(-2) = -7$

A1 Total 4

22 (a)

(b)

sin 0°	sin 30°	sin 45°	sin 60°	sin 90°
0	<u>1</u> 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

B1

 $= 24 \times \frac{1}{2}$ = 12 cm² Area $PQR = \frac{1}{2} \times 3 \times 8 \times \sin 45^{\circ}$ $= 12 \times \frac{\sqrt{2}}{2}$ $= 6 \sqrt{2} \text{ cm}^2$

Area $ABC = \frac{1}{2} \times 6 \times 8 \times \sin 30^{\circ}$

M1

M1

Triangle ABC has the larger area

A1

Total 4

TOTAL FOR PAPER: 80 MARKS